
CSCI5550 Advanced File and Storage Systems

Lecture 09:

Persistent Key-Value Stores

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk


Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification 

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 2

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

The Log-Structured Merge-Tree (Acta Informatica'96)



Persistent Key-Value Store

• Persistent key-value (KV) stores play a critical role 

in a variety of modern data-intensive applications:

– Such as e-commerce, cloud data, and social networking.

• In a KV store, data are stored as key-value pairs.

– A unique key is associated with a value of “any form”.

CSCI5550 Lec09: Persistent Key-Value Stores 3

K1 AAA, BBB, CCC

K2 AAA, BBB

K3 AAA, DDD

K4 30/03/2020

Key Value

K5 CSCI5550put/insert(key, value)

get/lookup(key)

delete(key)



Log-Structured Merge-Tree (LSM-Tree)

• For write-intensive workloads, KV stores based on 

LSM-tree have become the state of the art.

– Various distributed or local stores built on LSM-trees are 

widely deployed in largescale environments, such as:

• BigTable and LevelDB at Google;

• Cassandra, Hbase, and RocksDB at Facebook; and

• PNUTS at Yahoo!

• The main advantage of LSM-trees is that they 

maintain sequential access patterns for writes.

– The success of LSM-tree is tied closely to its usage upon 

classic hard-disk drives (HDDs): In which, random I/Os are 

over 100× slower than sequential ones.

CSCI5550 Lec09: Persistent Key-Value Stores 4



Overall Architecture of LSM-Tree

• An LSM-tree consists of a number of components of 

exponentially increasing sizes, C0 to Ck:

CSCI5550 Lec09: Persistent Key-Value Stores 5

C1~Ck are disk-resident, 

append-only B-trees.

C0 is a memory-resident, 

update-in-place sorted tree.

5

3

1 4

8

6 9

B

A C

E

F

D

E

F’

D

A C B F E D F’ E DDisk

Memory



LSM-Tree: Insertion & Compaction (1/2)

• Key-value pairs are always inserted into the LSM-

tree via the in-memory C0.

CSCI5550 Lec09: Persistent Key-Value Stores 6

• Once C0 reaches its size 

limit, C0 will be merged 

with the on-disk C1 by 

the compaction process.

– The newly merged tree 

C1’ will be appended into 

disk, replacing the old C1. 

• Compaction also takes 

place for all on-disk 

components, when any 

Ci reaches its size limit.

Key-value pairs



• During the compaction, the newly merged blocks are 

written to new disk positions.

CSCI5550 Lec09: Persistent Key-Value Stores 7

LSM-Tree: Insertion & Compaction (2/2)



LSM-Tree: Lookup

• To serve a lookup operation, LSM-trees may need to 

search over multiple components.

CSCI5550 Lec09: Persistent Key-Value Stores 8

– Components are scanned 

in a cascading fashion, 

from C0 to the smallest 

component Ci containing 

the requested data.

• Why? C0 contains the 

freshest data, followed by 

C1, and so on.

– Hence LSM-trees are 

more useful when inserts

are more dominant than 

lookups.



Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification 

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 9

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

https://github.com/google/leveldb



2 in-memory

sorted skiplists
(i.e., memtable and 

immutable memtable)

7 “levels” (L0 to L6) 

of on-disk

sortedstring
tables (SSTables)

LevelDB (by Google)

• LevelDB is a key-value store based on LSM-trees.

CSCI5550 Lec09: Persistent Key-Value Stores 10

10x

10x

10x

10x

...



Review: Sorted Skiplist

• A skip list is built in multiple layers: 

– The bottom layer is an ordinary ordered linked list.

– The higher layers allow you to “skip over” many items 

when searching over an particular item.

– It offers 𝑂(log 𝑛) search complexity and 𝑂(log 𝑛) insertion 

complexity within an ordered sequence of 𝑛 elements.

CSCI5550 Lec09: Persistent Key-Value Stores 11
https://en.wikipedia.org/wiki/Skip_list

https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/skiplists.pdf

Find 96?



Review: Sorted String Table

• A sorted string table (SSTable) is simply a file which 

contains a set of arbitrary, sorted key-value pairs.

– Strength: High throughput for sequential I/O workloads

– Weakness: Large I/O rewrite for random insert/deletion

CSCI5550 Lec09: Persistent Key-Value Stores 12https://medium.com/databasss/on-disk-io-part-3-lsm-trees-8b2da218496f



LevelDB: Insertion & Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 13

Foreground: 

All inserted KV 

pairs are first 

appended to an 

on-disk log file 

to enable 

recovery.

Foreground: The KV 

pairs are then inserted into 

the in-memory memtable.

Background: Once the 

memtable is full, it is converted 

into an immutable memtable.

Background: 

A compaction 

thread then 

flushes the 
immutable 
memtable
into the disk.

Background: Once the total size 

of a level Li exceeds its limit, the 

compaction thread will choose 

one file from Li, merge sort with 

all overlapped files at Li+1, and 

generate new Li+1 SSTable files.



LevelDB: Lookup

• LevelDB searches for a requested KV pair as follows: 

 memtable,  immutable memtable,  files of L0 to L6 in order

CSCI5550 Lec09: Persistent Key-Value Stores 14


Since LevelDB allows 

SSTable files in L0 to 

contain overlapping 

keys, multiple files at 

L0 may be searched.



The memtable always 

contain the freshest 

data, followed by the 

immutable memtable.









The total number of 

file searches can be 

bounded, since keys 

do not overlap among 

files in levels L1 to L6.



Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification 

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 15

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

WiscKey - Separating Keys from Values in SSD-conscious Storage (FAST'16)



Write and Read Amplification (1/2)

• Write and read amplification are major problems in 

LSM-tree based key-value stores such as LevelDB.

– Write (Read) Amplification: the ratio between the amount 

of data written to (read from) the storage and the amount of 

data requested by the user.

• The source of write amplification in LevelDB:

– LevelDB writes more data than necessary to achieve 

mostly-sequential disk access.

• The sources of read amplification in LevelDB:

– To lookup a key-value pair, LevelDB needs to check 

multiple SSTable files in multiple levels.

– To find a key-value pair within a SSTable file, LevelDB

needs to read multiple metadata blocks within the file.

CSCI5550 Lec09: Persistent Key-Value Stores 16



Write and Read Amplification (2/2)

• Experimental Setup: 

– Consider two different database sizes for the initial load

– Load a database with 16B-key, 1KB-value pairs

– Lookup 100,000 entries from the database

– Choose keys randomly from a uniform distribution

CSCI5550 Lec09: Persistent Key-Value Stores 17

Write/Read amplification 

increases with the 

dataset size!



Key-Value Separation

• The major performance cost of LSM-trees is the 

compaction, which constantly sorts SSTable files.

• Key-Value Separation: Compaction only needs to 

sort keys, while values can be managed separately.

– Only the “location” (addr) of value is stored in the LSM-tree, 

while real values are stored in a separate value log file.

CSCI5550 Lec09: Persistent Key-Value Stores 18



Benefits of Key-Value Separation

• The LSM-tree of WiscKey becomes much smaller 

than that of LevelDB.

– Compacting only keys could significantly reduce the write 

amplification, especially for workloads that have a 

moderately large value size.

– A significant portion of the LSM-tree can be possibly 

cached in memory (to reduce the read amplification). 

• A lookup may search fewer levels of table files in the LSM-tree. 

• Most lookups only require a single random read (for the value).

CSCI5550 Lec09: Persistent Key-Value Stores 19

LSM-tree

of LevelDB

Value Log

of WiscKeyLSM-tree

of WiscKey

memory

disk



Challenges of Key-Value Separation (1/3)

• Key-value separation may leads to many challenges:

• Challenge #1: Since keys and values are separately 

stored in WiscKey, range queries require multiple 

random reads, which are not efficient to the disk.

• The design of WiscKey is highly SSD optimized.

– Parallel random reads with a fairly large request size can 

fully utilize the internal parallelism of SSD, getting 

performance similar to sequential reads.

CSCI5550 Lec09: Persistent Key-Value Stores 20

LSM-tree

of WiscKey

disk

LSM-tree of LevelDB

SSD

memory

sst
Value Log

of WiscKey



Challenges of Key-Value Separation (2/3)

• Challenge #2: Since WiscKey does not compact 

values, it needs a special garbage collector to reclaim 

space occupied by deleted/overwritten values in vLog.

• WiscKey targets a lightweight and online GC: It only 

keeps valid values in a contiguous range of vLog.

– Valid values are appended back to the head of vLog.

– Both keys and values should be kept in vLog to determine 

whether a value is valid or not (by querying the LSM-tree).

CSCI5550 Lec09: Persistent Key-Value Stores 21

New ValuesOld Values



Challenges of Key-Value Separation (3/3)

• Challenge #3: Since WiscKey’s architecture stores 

values separately from the LSM-tree, obtaining the 

same crash guarantees can appear complicated.

• WiscKey provides the following crash guarantees:

– If the key cannot be found in the LSM-tree: 

• WiscKey informs the user that the key was not found.

– If the key can be found in the LSM-tree: 

• WiscKey verifies  whether the value address retrieved from the 

LSM-tree falls within the current valid range of vLog and  whether 

the value found corresponds to the queried key. 

• If the verifications fail, WiscKey deletes the key from the LSM-tree, 

and informs the user that the key was not found.

– WiscKey is not able to recovery the values, even if which 

had been written in vLog before the crash.

CSCI5550 Lec09: Persistent Key-Value Stores 22



Outline

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification 

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 23

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack

SLM-DB - Single-Level Key-Value Store with Persistent Memory (FAST'19)



State-of-the-art LSM-tree: LevelDB

• Optimized for heavy write application.

• Designed for slow hard disk drives (HDDs).

• Suffered from serious write and read amplification.

CSCI5550 Lec09: Persistent Key-Value Stores 24



Motivation: Byte-Addressable PM

• How can the byte-addressable persistent memory

(PM) enhance the performance of key-value stores?

CSCI5550 Lec09: Persistent Key-Value Stores 25

PM

PM

…



Idea: Single-Level Merge with PM

 Exploit PM to maintain a B+-tree index and stage KV 

pairs in a PM resident buffer (i.e., C0).

 Organize KV pairs in a single level on disks (i.e., C1).

 Avoid write-ahead logging (WAL) and multi-leveled 

merge/compaction to reduce write amplification.

CSCI5550 Lec09: Persistent Key-Value Stores 26



Single-Level Merge DB (SLM-DB)

• Persistent memtable avoids the write-ahead logging 

and provides stronger consistency than LevelDB.

• Persistent B+-tree avoids the on-disk multi-leveled 

merge structure and enables fast lookup.

– No need to merge KV pairs of one-level SST files at all!

CSCI5550 Lec09: Persistent Key-Value Stores 27



Persistent Memtable

CSCI5550 Lec09: Persistent Key-Value Stores 28



Selective Compaction

• Compaction operation is still needed:

 To collect garbage of obsolete KV pairs, and

 To improve the sequentiality of KV pairs in SSTables.

• SLM-DM performs the compaction in a selective way.

– A background thread compacts only candidate SSTables.

CSCI5550 Lec09: Persistent Key-Value Stores 29

range query
(10, 13)



Summary

• Persistent Key-Value Store

– Log-Structured Merge-Tree (LSM-tree)

• LevelDB (by Google)

– Insertion and Compaction

– Lookup

• WiscKey: Separating Keys from Values

– Write and Read Amplification 

– Key-Value Separation

– Benefits and Challenges

• Single-Level KV Store with PM

– Single-Level Merge

– Selective Compaction

CSCI5550 Lec09: Persistent Key-Value Stores 30

Application

File System

Block Layer

Device Driver

I/O Device

User

Kernel

I/O Stack


