HE P L KEF

The Chinese University of Hong Kong

CSCI5550 Advanced File and Storage Systems
Lecture 09:
Persistent Key-Value Stores

Ming-Chang YANG

e e ... - -
2 = = m
N aman . i SEERA U ¢ f 4 0 .. 000 st RaaNEE
) L E r e I
*))»43“‘ % i ; llllllllllll oo ot s o
T .I & s o ot
3 add o st thhe, i -
\%1 ’ e - -
e = &
R : | e
el " '] ‘l bbbbbbbbb -
- B SRR TNl B e . 0 TN WYY Ol el e] it
W
SLE T -~
Is 3 u
PR LS -
e B b bw

mailto:mcyang@cse.cuhk.edu.hk

Outline

* Persistent Key-Value Store /O Stack
— Log-Structured Merge-Tree (LSM-tree) Application

* LevelDB (by Google) 4 User
— Insertion and Compaction Kernel
— Lookup File System

WiscKey: Separating Keys from Values

— Write and Read Amplification Block Layer
— Key-Value Separation

— Benefits and Challenges

« Single-Level KV Store with PM
— Single-Level Merge
— Selective Compaction /O Device

Device Driver

CSCI5550 Lec09: PerSiStent Key-Va|ue Stores The Log-Structured Merge-Tree (Acta Informatica’'96) 2

Persistent Key-Value Store

« Persistent key-value (KV) stores play a critical role
In a variety of modern data-intensive applications:

— Such as e-commerce, cloud data, and social networking.

* In a KV store, data are stored as key-value pairs.
— A unique key Is associated with a value of "any form”.

Key Value
get/lookup(key) » K1 AAA, BBB, CCC
delete(key) M| K2 AAA, BBB
K3 AAA, DDD

30/03/2020

put/insert(key, value) » CSCI5550

CSCI5550 Lec09: Persistent Key-Value Stores

Log-Structured Merge-Tree (LSM-Tree)

 For write-intensive workloads, KV stores based on
L SM-tree have become the state of the art.

— Various distributed or local stores built on LSM-trees are
widely deployed in largescale environments, such as:

» BigTable and LevelDB at Google;
e Cassandra, Hbase, and RocksDB at Facebook: and
* PNUTS at Yahoo!

* The main advantage of LSM-trees is that they
maintain sequential access patterns for writes.

— The success of LSM-tree is tied closely to its usage upon
classic hard-disk drives (HDDs): In which, random I/Os are
over 100x slower than sequential ones.

CSCI5550 Lec09: Persistent Key-Value Stores 4

 An LSM-tree consists of a number of components of
exponentially increasing sizes, €0 to Ck:

Co is a memory-resident,
update-in-place sorted tree.

C1~Ck are disk-resident,

append-only B-trees.
D D
\
B E E
e L]
Disk[A[C[BIF|/E/DSE]D

CSCI5550 Lec09: Persistent Key-Value Stores

CO $> memory
disk
Cl A

o~

LSM-Tree: Insertion & Compaction (1/2)

« Key-value pairs are always inserted into the LSM-
tree via the in-memory Ce.

‘ Key-value pairs
* Once CO reaches its size N
limit, c@ will be merged > memory
with the on-disk C1 by

: Cl
the compaction process.

— The newly merged tree C2 l merge sort

C1’ will be appended into
disk, replacing the old C1.

« Compaction also takes
place for all on-disk - i i
components, when any
Ci reaches its size limit.

CSCI5550 Lec09: Persistent Key-Value Stores 6

disk

LSM-Tree: Insertion & Compaction (2/2)

« During the compaction, the newly merged blocks are
written to new disk positions.

Cq tree Cp tree

Memory

l
|
CSCI5550 Lec09: Persistent Key-Value Stores

LSM-Tree: Lookup

« To serve a lookup operation, LSM-trees may need to
search over multiple components.

— Components are scanned
. . . CoO
in a cascading fashion, &

from CO to the smallest o
component Ci containing CI

the requested data. 7
« Why? C@ contains the Q merge sort
freshest data, followed by
C1, and so on.

— Hence LSM-trees are

more useful when inserts
are more dominant than C@
lookups.

CSCI5550 Lec09: Persistent Key-Value Stores

memory

Outline

* LevelDB (by Google) T &5 Coor
— Insertion and Compaction Kernel
— Lookup File System
Block Layer

Device Driver

/O Device

CSCI5550 Lec09: Persistent Key-Value Stores hitps://github.com/googleflevelds 2

LevelDB (by Google)

* LevelDB is a key-value store based on LSM-trees.
2 In-memory g
sorted skiplists <
(l.e., memtable and U
immutable memtable) (

7 “levels” (LO to L6)
of on-disk
sorted string
tables (SSTables)

ey () () (O O O O
O SSTable files D memtable . |mmutable

CSCI5550 Lec09: Persistent Key-Value Stores

Review: Sorted Skiplist

« Askip list is built in multiple layers:
— The bottom layer is an ordinary ordered linked list.

— The higher layers allow you to “skip over” many items
when searching over an particular item.

Find 96?

96 < 317 | 96 < Inft?)
B s 96 <917 96 <Inf? | H
o | Y < >
B — 311 : [196 <Inf? | =
> 2 |o0—— o—> o > > Yl o >
a - I5H — 76 - Hor—or _
o> H|0+) o> | 6o o> 7| o‘-» 87-|—>v..|i|’§501-i

— It offers O(logn) search complexity and O(logn) insertion
complexity within an ordered sequence of n elements.

. . https://en.wikipedia.org/wiki/Skip_list
CSC|5550 LeC09. PerS|Stent Key-Va|ue Stores https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/skiplists.pdf 11

Review: Sorted String Table

 Asorted string table (SSTable) is simply a file which
contains a set of arbitrary, sorted key-value pairs.

Index Block

r key1:offset1

r key2:offset2

r key3:offset3

r key4:offsetd

— Strength: High throughput for sequential I/O workloads
— Weakness: Large I/O rewrite for random insert/deletion

CSCI5550 Lec09: Persistent Key-Value Stores

Data Block

r key1 1

valuel

key2

value?2

key3

value3

[key4d J

valued

https://medium.com/databasss/on-disk-io-part-3-Ism-trees-8b2da218496f 12

Background: Once the
memtable is full, it is converted
iInto an immutable memtable.

Foreground: The KV
pairs are then inserted into
the in-memory memtable.

il —

Background: 9
A compaction =" |
thread then . S TT T T T -
flushes the disk ~e
immutable |L0(8MB) D . : : Log :
memtable
. . (10MB)
into the disk. . D . S

12 (100MB) ——L 1 (1 [| Foreground:

Background: Once the total size | | All inserted KV

U memtable L3 (IGB) of a level L; exceeds its limit, the || pairs are first

() SSTable files Lé (ITB)

compaction thread will choose

one file from L;, merge sort with
all overlapped flles at L;,,, and
generate new L, , SSTable files.

i+l

appended to an
on-disk log file
to enable
recovery.

CSCI5550 Lec09: Persistent Key-Value Stores

13

LevelDB: Lookup

* LevelDB searches for a requested KV pair as follows:
@® memtable, @ immutable memtable, @ files of L@ to L6 in order

The memtable always
contain the freshest
data, followed by the
immutable memtable.

memaory

Since LevelDB allows
SSTable files in LO to
contain overlapping

keys, multiple files at
L@ may be searched.

The total number of
file searches can be
bounded, since keys
do not overlap among
files in levels L1 to L6.

CSCI5550 Lec09: Persistent Key-Value Stores

LI (10MB) D
L2 (100MB) O
L6 (ITB) O

e dihdil

memtable

immutable

SSTable files

14

Outline

/O Stack

Application
User

* WiscKey: Separating Keys from Values

— Write and Read Amplification
— Key-Value Separation
— Benefits and Challenges

CSCI5550 Lec09: Persistent Key-Value Stores

Kernel

File System

Block Layer

Device Driver

WiscKey - Separating Keys from Values in

/O Device

SSD-conscious Storage (FAST'16) 15

Write and Read Amplification (1/2)

* Write and read amplification are major problems in
LSM-tree based key-value stores such as LevelDB.

— Write (Read) Amplification: the ratio between the amount
of data written to (read from) the storage and the amount of
data requested by the user.

* The source of write amplification in LevelDB:

— LevelDB writes more data than necessary to achieve
mostly-sequential disk access.

* The sources of read amplification in LevelDB:

— To lookup a key-value pair, LevelDB needs to check
multiple SSTable files in multiple levels.

— To find a key-value pair within a SSTable file, LevelDB
needs to read multiple metadata blocks within the file.

CSCI5550 Lec09: Persistent Key-Value Stores 16

Write and Read Amplification (2/2)

« Experimental Setup:
— Consider two different database sizes for the initial load
— Load a database with 16B-key, 1KB-value pairs
— Lookup 100,000 entries from the database
— Choose keys randomly from a uniform distribution

1000 Il Write #/ Read

Write/Read amplification
Increases with the

100- _
dataset size!

10 1

Amplification Ratio

3.1

1

| 1 GB 100 GB
CSCI5550 Lec09: Persistent Key-Value Stores 17

\\§

Key-Value Separation

* The major performance cost of LSM-trees is the
compaction, which constantly sorts SSTable files.

Key-Value Separation: Compaction only needs to
sort keys, while values can be managed separately.

— Only the “location” (addr) of value is stored in the LSM-tree,
while real values are stored in a separate value log file.
<key, value>

<key, addr>

LSM-tree

CSCI5550 Lec09: Persistent Key-Value Stores

value

value | value | value

Value Log

18

Benefits of Key-Value Separation

 The LSM-tree of WiscKey becomes much smaller
than that of LevelDB.

— Compacting only keys could significantly reduce the write
amplification, especially for workloads that have a
moderately large value size.

— A significant portion of the LSM-tree can be possibly
cached in memory (to reduce the read amplification).
* Alookup may search fewer levels of table files in the LSM-tree.
* Most lookups only require a single random read (for the value).

i

memory
——————————————————————— ™3
disk /\
Value Log
LSM-tree LSM-tree of WiscKey
of LevelDB of WiscKey

CSCI5550 Lec09: Persistent Key-Value Stores 19

Challenges of Key-Value Separation (1/3)

« Key-value separation may leads to many challenges:

 Challenge #1: Since keys and values are separately
stored in WiscKey, range queries require multiple
random reads, which are not efficient to the disk.

* The design of WiscKey is highly SSD optimized.

— Parallel random reads with a fairly large request size can
fully utilize the internal parallelism of SSD, getting
performance similar to sequential reads.

memory /\\

_______________________ '_____.________ —
gk
SSD ValuellLog
LSM-tree of WiscKey
L SM-tree of LevelDB of WiscKey

CSCI5550 Lec09: Persistent Key-Value Stores 20

Challenges of Key-Value Separation (2/3)

« Challenge #2: Since WiscKey does not compact
values, it needs a special garbage collector to reclaim
space occupied by deleted/overwritten values in vLog.

* WiscKey targets a lightweight and online GC: It only
keeps valid values in a contiguous range of vLog.
— Valid values are appended back to the head of vLog.

— Both keys and values should be kept in vLog to determine

whether a value is valid or not (by querying the LSM-tree).

Old Values New Values
tail head and tail are stored in LSM-tree head

l ' Value Log I ‘

ksize, vsize, key,value| - - =-==-==-----

CSCI5550 Lec09: Persistent Key-Value Stores 21

Challenges of Key-Value Separation (3/3)

« Challenge #3: Since WiscKey’s architecture stores
values separately from the LSM-tree, obtaining the
same crash guarantees can appear complicated.

« WiscKey provides the following crash guarantees:

— If the key cannot be found in the LSM-tree:
« WiscKey informs the user that the key was not found.

— If the key can be found in the LSM-tree:

« WiscKey verifies ® whether the value address retrieved from the
LSM-tree falls within the current valid range of vLog and @ whether
the value found corresponds to the queried key.

« If the verifications fail, WiscKey deletes the key from the LSM-tree,
and informs the user that the key was not found.
— WiscKey is not able to recovery the values, even if which
had been written in vLog before the crash.

CSCI5550 Lec09: Persistent Key-Value Stores 22

Outline

/O Stack

Application

Kernel

File System
Block Layer

- Single-Level KV Store with PM Device Driver

— Single-Level Merge
— Selective Compaction /0 Device

CSC|5550 LeC09: PerSiStent Key-Va|Ue Stores SLM-DB - Single-Level Key-Value Store with Persistent Memory (FAST'19) 23

State-of-the-art LSM-tree: LevelDB

Optimized for heavy write application.
* Designed for slow hard disk drives (HDDs).
Suffered from serious write and read amplification.

Store file Write—Ahead— E-uu------:------.--------E
. L. N : Application :
organization and MANIFEST WAL . Log (nofsync) imrseiceenndd
metadata |mmmmmmmmmmm e mmmmmmmy ! In-memory
. ' Level O N o o Sequential write skiplist to
Sorted String + _________ UL, ™ Flush . ERBIEETRI
Tables (SST) '====-- l gttt dele] i fo the disk b P
'Level 1 : !
Merge from © “---------- — __"TV_"_"_"I : MemTable
LevelNto Compaction 5)] ’
LevelN+1 | f Immutable)
o N 10r E : MemTable
Each levelis Level 2 DD [”: | I) ‘

Mark Immutable

10x larger than i R ;
previous Disk | Memory WHER fjﬁommg

CSCI5550 Lec09: Persistent Key-Value Stores 24

 How can the byte-addressable persistent memory
(PM) enhance the performance of key-value stores?

Persistent
Memory

» « O
-

= & > & &
D N > e

fast speed slow

PM
o /\> meERGTy S &> memory
disk

Cl /\
C2 /\7 merge sort C2 /\7 merge sort

CSCI5550 Lec09: Persistent Key-Value Stores 25

Byte addressable Persistent storage

ldea: Single-Level Merge with PM

@ Exploit PM to maintain a B+-tree index and stage KV
pairs in a PM resident buffer (i.e., C0).

@ Organize KV pairs in a single level on disks (i.e., C1).

-> Avoid write-ahead logging (WAL) and multi-leveled

merge/compaction to reduce write amplification.

Single disk component C1
that does self-merging merge B+-tree to manage data

C, stored in the disk
merge I
: o

.........
................

Disk | Persistent

CSCI5550 Lec09: Persistent Key-Value Stores Memory 26

(O

Persistent memtable avoids the write-ahead logging
and provides stronger consistency than LevelDB.

Persistent B+-tree avoids the on-disk multi-leveled
merge structure and enables fast lookup.

— No need to merge KV pairs of one-level SST files at all!

Slmllar as |n E.";‘.““i.““:"""";
LevelDB D o No WAL
St v MANIFEST Flush |) |)
of SST files MemTable
Level 0 |:||:| I] Dl:”:l ¥ Immutable
Y S b S— O W MemTable
L J
St I Index per-
) A key that
compaction™ e Global stored in the
Select candidate

B+-Tree disk

files to merge
themtogether pijsk Persistent Memory

27

Persistent Memtable

Recoverable
after failure

No consistency
guaranteed |

h 4
Y
h 4
h 4
Y

' Consistency
|

‘guaranteed =1 L= el Lo Lol e LA LR L=

(3) Atomically change r (2) Assign next

L 4 pointer and clflush()

IS

CSCI5550 Lec09: Persistent Key-Value Stores 28

next pointer

(1) create node

Selective Compaction

 Compaction operation is still needed:
@ To collect garbage of obsolete KV pairs, and
@ To improve the sequentiality of KV pairs in SSTables.

« SLM-DM performs the compaction in a selective way.
— A background thread compacts only candidate SSTables.

Need garbage
. - Valid KV pair
collection (GC) range query
(1@ 13) - Obsolete KV pair
J
AN
- N\
File#olj 10 17J‘ File#1 | 11 | 13 | 19 [| Fite#2 | 6 | 14| 35 || || File#3 | 1 | 11 | 14 File#4’t 17| 35
__ New file New file

KV-pairs became
obsolete

CSCI5550 Lec09: Persistent Key-Value Stores 29

Summary

* Persistent Key-Value Store /O Stack
— Log-Structured Merge-Tree (LSM-tree) Application

* LevelDB (by Google) 4 User
— Insertion and Compaction Kernel
— Lookup File System

* WiscKey: Separating Keys from Values
— Write and Read Amplification Block Layer
— Key-Value Separation
— Benefits and Challenges

« Single-Level KV Store with PM
— Single-Level Merge
— Selective Compaction /O Device

Device Driver

CSCI5550 Lec09: Persistent Key-Value Stores 30

